52,058 research outputs found

    1996 Survey of Rhode Island Law: Cases: Civil Procedure

    Get PDF

    Book Review

    Get PDF
    Review of the book: HELENA SZEJNWALD BROWN, ET AL., CORPORATE ENVIRONMENTALISM IN A GLOBAL ECONOMY: SOCIETAL VALUES IN INTERNATIONAL TECHNOLOGY TRANSFER. (Quorum Books 1993) [264 pp.] Acknowledgments, bibliography, figures, index, tables. LC 92- 19851; ISBN: 0-89930-802-3. [$49.95. P.O. Box 5007, Westport CT 06881.

    ILDG Middleware Working Group Status Report

    Full text link
    We report on the status of the ILDG Middleware Working Group.Comment: Lat2004(ILDG

    Ames vision group research overview

    Get PDF
    A major goal of the reseach group is to develop mathematical and computational models of early human vision. These models are valuable in the prediction of human performance, in the design of visual coding schemes and displays, and in robotic vision. To date researchers have models of retinal sampling, spatial processing in visual cortex, contrast sensitivity, and motion processing. Based on their models of early human vision, researchers developed several schemes for efficient coding and compression of monochrome and color images. These are pyramid schemes that decompose the image into features that vary in location, size, orientation, and phase. To determine the perceptual fidelity of these codes, researchers developed novel human testing methods that have received considerable attention in the research community. Researchers constructed models of human visual motion processing based on physiological and psychophysical data, and have tested these models through simulation and human experiments. They also explored the application of these biological algorithms to applications in automated guidance of rotorcraft and autonomous landing of spacecraft. Researchers developed networks for inhomogeneous image sampling, for pyramid coding of images, for automatic geometrical correction of disordered samples, and for removal of motion artifacts from unstable cameras

    Detection and recognition of simple spatial forms

    Get PDF
    A model of human visual sensitivity to spatial patterns is constructed. The model predicts the visibility and discriminability of arbitrary two-dimensional monochrome images. The image is analyzed by a large array of linear feature sensors, which differ in spatial frequency, phase, orientation, and position in the visual field. All sensors have one octave frequency bandwidths, and increase in size linearly with eccentricity. Sensor responses are processed by an ideal Bayesian classifier, subject to uncertainty. The performance of the model is compared to that of the human observer in detecting and discriminating some simple images

    Image management research

    Get PDF
    Two types of research issues are involved in image management systems with space station applications: image processing research and image perception research. The image processing issues are the traditional ones of digitizing, coding, compressing, storing, analyzing, and displaying, but with a new emphasis on the constraints imposed by the human perceiver. Two image coding algorithms have been developed that may increase the efficiency of image management systems (IMS). Image perception research involves a study of the theoretical and practical aspects of visual perception of electronically displayed images. Issues include how rapidly a user can search through a library of images, how to make this search more efficient, and how to present images in terms of resolution and split screens. Other issues include optimal interface to an IMS and how to code images in a way that is optimal for the human perceiver. A test-bed within which such issues can be addressed has been designed

    Pyramid image codes

    Get PDF
    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer

    Coulomb gauge confinement in the heavy quark limit

    Full text link
    The relationship between the nonperturbative Green's functions of Yang-Mills theory and the confinement potential is investigated. By rewriting the generating functional of quantum chromodynamics in terms of a heavy quark mass expansion in Coulomb gauge, restricting to leading order in this expansion and considering only the two-point functions of the Yang-Mills sector, the rainbow-ladder approximation to the gap and Bethe-Salpeter equations is shown to be exact in this case and an analytic, nonperturbative solution is presented. It is found that there is a direct connection between the string tension and the temporal gluon propagator. Further, it is shown that for the 4-point quark correlation functions, only confined bound states of color-singlet quark-antiquark (meson) and quark-quark (baryon) pairs exist.Comment: 22 pages, 6 figure

    Coevolutionary Dynamics in a Minimal Substrate

    No full text
    One of the central difficulties of coevolutionary methods arises from 'intransitive superiority' - in a two-player game, for example, the fact that A beats B, and B beats C, does not exclude the possibility that C beats A. Such cyclic superiority in a coevolutionary substrate is hypothesized to cause cycles in the dynamics of the population such that it 'chases its own tail' - traveling through some part of strategy space more than once despite apparent improvement with each step. It is often difficult to know whether an application domain contains such difficulties and to verify this hypothesis in the failure of a given coevolutionary set-up. In this paper we wish to elucidate some of the issues and concepts in an abstract domain where the dynamics of coevolution can be studied simply and directly. We define three simple 'number games' that illustrate intransitive superiority and resultant oscillatory dynamics, as well as some other relevant concepts. These include the distinction between a player's perceived performance and performance with respect to an external metric, and the significance of strategies with a multi-dimensional nature. These features alone can also cause oscillatory behavior and coevolutionary failure
    • 

    corecore